Premium
Recent modelling of sedimentation of suspended particles: a survey 1
Author(s) -
Boogerd P.,
Scarlett B.,
Brouwer R.
Publication year - 2001
Publication title -
irrigation and drainage
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 38
eISSN - 1531-0361
pISSN - 1531-0353
DOI - 10.1002/ird.15
Subject(s) - settling , sedimentation , sediment transport , aggradation , mechanics , sediment , stratification (seeds) , geology , environmental science , geomorphology , physics , environmental engineering , seed dormancy , germination , botany , structural basin , dormancy , fluvial , biology
Recent literature on modelling of sedimentation was studied. Attention was paid to hydrodynamics, numerical simulation, settling velocity models, sediment and velocity distribution functions, and sediment transport equations. Many popular theories, e.g. those regarding stratification and preferential sweeping, are under discussion. The traditional view that large‐scale, energy‐containing fluid motions dominate the transport of particles is found to be under attack, as is the modification of the von Karman coefficient to account for the presence of sediment. It is unclear which model for hindered settling should be used under what circumstances, and the effect of particle distribution cannot yet be calculated. Even the most basic problems, such as settling of multiple and/or non‐spherical particles in a quiescent liquid, still require research. In the field of sediment distribution functions new solutions are still not entirely satisfactory. Furthermore, the predictive value of transport rate models is still rather low, and several popular sediment transport functions consistently allow more degradation than aggradation. Copyright © 2001 John Wiley & Sons, Ltd.