z-logo
Premium
Optimal design of nonlinear model predictive controller based on new modified multitracker optimization algorithm
Author(s) -
Elsisi Mahmoud
Publication year - 2020
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.22275
Subject(s) - cuckoo search , nonlinear system , robustness (evolution) , control theory (sociology) , computer science , algorithm , robot manipulator , artificial intelligence , control engineering , robot , engineering , control (management) , particle swarm optimization , physics , quantum mechanics , biochemistry , chemistry , gene
The controller design for the robotic manipulator faces different challenges such as the system's nonlinearities and the uncertainties of the parameters. Furthermore, the tracking of different linear and nonlinear trajectories represents a vital role by the manipulator. This paper suggests an optimal design for the nonlinear model predictive control (NLMPC) based on a new improved intelligent technique and it is named modified multitracker optimization algorithm (MMTOA). The proposed modification of the MTOA is carried out based on opposition‐based learning (OBL) and quasi OBL approaches. This modification improves the exploration behavior of the MTOA to prevent it from becoming trapped in a local optimum. The proposed method is applied on the robotic manipulator to track different linear and nonlinear trajectories. The NLMPC parameters are tuned by the MMTOA rather than the trial and error method of the designer. The proposed NLMPC based on MMTOA is compared with the original MTOA, genetic algorithm, and cuckoo search algorithm in literature. The superiority and effectiveness of the proposed controller are confirmed to track different linear and nonlinear trajectories. Furthermore, the robustness of the proposed method is emphasized against the uncertainties of the parameters.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here