Premium
Some q‐rung orthopair fuzzy Heronian mean operators in multiple attribute decision making
Author(s) -
Wei Guiwu,
Gao Hui,
Wei Yu
Publication year - 2018
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.21985
Subject(s) - mathematics , operator (biology) , geometric mean , fuzzy logic , mathematical optimization , computer science , statistics , artificial intelligence , biochemistry , chemistry , repressor , transcription factor , gene
The generalized Heronian mean and geometric Heronian mean operators provide two aggregation operators that consider the interdependent phenomena among the aggregated arguments. In this paper, the generalized Heronian mean operator and geometric Heronian mean operator under the q‐rung orthopair fuzzy sets is studied. First, the q‐rung orthopair fuzzy generalized Heronian mean (q‐ROFGHM) operator, q‐rung orthopair fuzzy geometric Heronian mean (q‐ROFGHM) operator, q‐rung orthopair fuzzy generalized weighted Heronian mean (q‐ROFGWHM) operator, and q‐rung orthopair fuzzy weighted geometric Heronian mean (q‐ROFWGHM) operator are proposed, and some of their desirable properties are investigated in detail. Furthermore, we extend these operators to q‐rung orthopair 2‐tuple linguistic sets (q‐RO2TLSs). Then, an approach to multiple attribute decision making based on q‐ROFGWHM (q‐ROFWGHM) operator is proposed. Finally, a practical example for enterprise resource planning system selection is given to verify the developed approach and to demonstrate its practicality and effectiveness.