z-logo
Premium
Type‐1 OWA Unbalanced Fuzzy Linguistic Aggregation Methodology: Application to Eurobonds Credit Risk Evaluation
Author(s) -
Chiclana Francisco,
Mata Francisco,
Pérez Luis G.,
HerreraViedma Enrique
Publication year - 2018
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.21912
Subject(s) - operator (biology) , computer science , fuzzy logic , representation (politics) , linguistics , rule based machine translation , artificial intelligence , fuzzy set , mathematics , natural language processing , biochemistry , chemistry , repressor , politics , transcription factor , political science , law , gene , philosophy
In decision making, a widely used methodology to manage unbalanced fuzzy linguistic information is the linguistic hierarchy (LH), which relies on a linguistic symbolic computational model based on ordinal 2‐tuple linguistic representation. However, the ordinal 2‐tuple linguistic approach does not exploit all advantages of Zadeh's fuzzy linguistic approach to model uncertainty because the membership function shapes are ignored. Furthermore, the LH methodology is an indirect approach that relies on the uniform distribution of symmetric linguistic assessments. These drawbacks are overcome by applying a fuzzy methodology based on the implementation of the type‐1 ordered weighted average (T1OWA) operator. The T1OWA operator is not a symbolic operator and it allows to directly aggregate membership functions, which in practice means that the T1OWA methodology is suitable for both balanced and unbalanced linguistic contexts and with heterogeneous membership functions. Furthermore, the final output of the T1OWA methodology is always fuzzy and defined in the same domain of the original unbalanced fuzzy linguistic labels, which facilitates its interpretation via a visual joint representation. A case study is presented where the T1OWA operator methodology is used to assess the creditworthiness of European bonds based on real credit risk ratings of individual Eurozone member states modeled as unbalanced fuzzy linguistic labels.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here