Premium
Evolution computation based learning algorithms of polygonal fuzzy neural networks
Author(s) -
He Chunmei,
Ye Youpei
Publication year - 2011
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.20469
Subject(s) - algorithm , computer science , fuzzy logic , artificial neural network , realization (probability) , conjugate gradient method , constant (computer programming) , population based incremental learning , artificial intelligence , genetic algorithm , mathematics , machine learning , statistics , programming language
We present two fuzzy conjugate gradient learning algorithms based on evolutionary algorithms for polygonal fuzzy neural networks (PFNN). First, we design a new algorithm, fuzzy conjugate algorithm based on genetic algorithm (GA). In the algorithm, we obtain an optimal learning constant η by GA and the experiment indicates the new algorithm always converges. Because the algorithm based on GA is a little slow in every iteration step, we propose to get the learning constant η by quantum genetic algorithm (QGA) in place of GA to decrease time spent in every iteration step. The PFNN tuned by the proposed learning algorithm is applied to approximation realization of fuzzy inference rules, and some experiments demonstrate the whole process. © 2011 Wiley Periodicals, Inc.