Premium
A kernel‐based core growing clustering method
Author(s) -
Hsieh T. W.,
Taur J. S.,
Tao C. W.,
Kung S. Y.
Publication year - 2009
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.20346
Subject(s) - cluster analysis , computer science , fuzzy clustering , kernel (algebra) , data mining , kernel method , correlation clustering , pruning , determining the number of clusters in a data set , cure data clustering algorithm , support vector machine , partition (number theory) , pattern recognition (psychology) , artificial intelligence , algorithm , mathematics , combinatorics , agronomy , biology
In this paper, a novel clustering method in the kernel space is proposed. It effectively integrates several existing algorithms to become an iterative clustering scheme, which can handle clusters with arbitrary shapes. In our proposed approach, a reasonable initial core for each of the cluster is estimated. This allows us to adopt a cluster growing technique, and the growing cores offer partial hints on the cluster association. Consequently, the methods used for classification, such as support vector machines (SVMs), can be useful in our approach. To obtain initial clusters effectively, the notion of the incomplete Cholesky decomposition is adopted so that the fuzzy c‐means (FCM) can be used to partition the data in a kernel defined‐like space. Then a one‐class and a multiclass soft margin SVMs are adopted to detect the data within the main distributions (the cores) of the clusters and to repartition the data into new clusters iteratively. The structure of the data set is explored by pruning the data in the low‐density region of the clusters. Then data are gradually added back to the main distributions to assure exact cluster boundaries. Unlike the ordinary SVM algorithm, whose performance relies heavily on the kernel parameters given by the user, the parameters are estimated from the data set naturally in our approach. The experimental evaluations on two synthetic data sets and four University of California Irvine real data benchmarks indicate that the proposed algorithms outperform several popular clustering algorithms, such as FCM, support vector clustering (SVC), hierarchical clustering (HC), self‐organizing maps (SOM), and non‐Euclidean norm fuzzy c‐means (NEFCM). © 2009 Wiley Periodicals, Inc.4