Premium
Adaptive modeling and discovery in bioinformatics: The evolving connectionist approach
Author(s) -
Kasabov Nikola
Publication year - 2008
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.20282
Subject(s) - connectionism , computer science , artificial intelligence , machine learning , knowledge extraction , profiling (computer programming) , artificial neural network , modelling biological systems , adaptation (eye) , data mining , systems biology , bioinformatics , biology , neuroscience , operating system
Most biological processes that are currently being researched in bioinformatics are complex, dynamic processes that are difficult to model and understand. The paper presents evolving connectionist systems (ECOS) as a general approach to adaptive modeling and knowledge discovery in bioinformatics. This approach extends the traditional machine learning approaches with various adaptive learning and rule extraction procedures. ECOS belong to the class of incremental local learning and knowledge‐based neural networks. They are applied here to challenging problems in Bioinformatics, such as: microarray gene expression profiling, gene regulatory network (GRN) modeling, computational neurogenetic modeling. The ECOS models have several advantages when compared to the traditional techniques: fast learning, incremental adaptation to new data, facilitating knowledge discovery through fuzzy rules. © 2008 Wiley Periodicals, Inc.