z-logo
Premium
A hybrid fuzzy cognitive model based on weighted OWA operators and single‐antecedent rules
Author(s) -
Lv Zhenbang,
Zhou Lihua
Publication year - 2007
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.20243
Subject(s) - antecedent (behavioral psychology) , computer science , fuzzy logic , fuzzy cognitive map , cognition , artificial intelligence , fuzzy set , data mining , mathematics , fuzzy set operations , psychology , social psychology , neuroscience
Conventional fuzzy cognitive maps (FCMs) can only represent monotonic or symmetric causal relationships and cannot simulate the AND/OR combinations of the antecedent nodes. The rule‐based fuzzy cognitive maps (RBFCMs) usually suffer from the well‐known combinatorial rule explosion problem. A hybrid fuzzy cognitive model based on weighted OWA operators and single‐antecedent rules is proposed to eliminate the drawbacks of the existing FCM models. Hybrid fuzzy cognitive maps (HFCMs) represent the causal relationships with single‐antecedent fuzzy rules and handle the various AND/OR relationships among the antecedent nodes with weighted OWA aggregation operators. Compared with conventional FCMs, HFCMs have more powerful cognitive capability. Compared with RBFCMs, HFCMs reduce the scale and complexity of the rule bases significantly and have better representation and inference performance. © 2007 Wiley Periodicals, Inc. Int J Int Syst 22: 1189–1196, 2007.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here