z-logo
Premium
Discover dependency pattern among attributes by using a new type of nonlinear multiregression
Author(s) -
Xu Kebin,
Wang Zhenyuan,
Wong ManLeung,
Leung KwongSak
Publication year - 2001
Publication title -
international journal of intelligent systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.291
H-Index - 87
eISSN - 1098-111X
pISSN - 0884-8173
DOI - 10.1002/int.1043
Subject(s) - categorical variable , dependency (uml) , computer science , set (abstract data type) , nonlinear system , artificial intelligence , choquet integral , function (biology) , binary number , population , data mining , machine learning , mathematics , demography , arithmetic , quantum mechanics , evolutionary biology , sociology , biology , programming language , fuzzy logic , physics
Multiregression is one of the most common approaches used to discover dependency pattern among attributes in a database. Nonadditive set functions have been applied to deal with the interactive predictive attributes involved, and some nonlinear integrals with respect to nonadditive set functions are employed to establish a nonlinear multiregression model describing the relation between the objective attribute and predictive attributes. The values of the nonadditive set function play a role of unknown regression coefficients in the model and are determined by an adaptive genetic algorithm from the data of predictive and objective attributes. Furthermore, such a model is now improved by a new numericalization technique such that the model can accommodate both categorical and continuous numerical attributes. The traditional dummy binary method dealing with the mixed type data can be regarded as a very special case of our model when there is no interaction among the predictive attributes and the Choquet integral is used. When running the algorithm, to avoid a premature during the evolutionary procedure, a technique of maintaining diversity in the population is adopted. A test example shows that the algorithm and the relevant program have a good reversibility for the data. © 2001 John Wiley & Sons, Inc.16: 949–962 (2001)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom