
Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries
Author(s) -
Wu Yujing,
Wang Shuo,
Li Hong,
Chen Liquan,
Wu Fan
Publication year - 2021
Publication title -
infomat
Language(s) - English
Resource type - Journals
ISSN - 2567-3165
DOI - 10.1002/inf2.12224
Subject(s) - thermal stability , thermal runaway , thermal , materials science , flammability , electrolyte , battery (electricity) , process engineering , chemical engineering , composite material , engineering , chemistry , thermodynamics , physics , power (physics) , electrode
Thermal safety is one of the major issues for lithium‐ion batteries (LIBs) used in electric vehicles. The thermal runaway mechanism and process of LIBs have been extensively studied, but the thermal problems of LIBs remain intractable due to the flammability, volatility and corrosiveness of organic liquid electrolytes. To ultimately solve the thermal problem, all‐solid‐state LIBs (ASSLIBs) are considered to be the most promising technology. However, research on the thermal stability of solid‐state electrolytes (SEs) is still in its initial stage, and the thermal safety of ASSLIBs still needs further validation. Moreover, the specified reviews summarizing the thermal stability of ASSLIBs and all types of SEs are still missing. To fill this gap, this review systematically discussed recent progress in the field of thermal properties investigation for ASSLIBs, form levels of materials and interface to the whole battery. The thermal properties of three major types of SEs, including polymer, oxide, and sulfide SEs are systematically reviewed here. This review aims to provide a comprehensive understanding of the thermal stability of SEs for the benign development of ASSLIBs and their promising application under practical operating conditions.