Premium
Multiatlas‐based segmentation of female pelvic organs: Application for computer‐aided diagnosis of cervical cancer
Author(s) -
Daly Asma,
Yazid Hedi,
Solaiman Basel,
Essoukri Ben Amara Najoua
Publication year - 2021
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22478
Subject(s) - segmentation , computer science , atlas (anatomy) , artificial intelligence , scale space segmentation , image segmentation , magnetic resonance imaging , pattern recognition (psychology) , cervical cancer , computer vision , cancer , radiology , medicine , anatomy
Atlas‐based segmentation is a high level segmentation technique which has become a standard paradigm for exploiting prior knowledge in image segmentation. Recent multiatlas‐based methods have provided greatly accurate segmentations of different parts of the human body by propagating manual delineations from multiple atlases in a data set to a query subject and fusing them. The female pelvic region is known to be of high variability which makes the segmentation task difficult. We propose, here, an approach for the segmentation of magnetic resonance imaging (MRI) called multiatlas‐based segmentation using online machine learning (OML). The proposed approach allows separating regions which may be affected by cervical cancer in a female pelvic MRI. The suggested approach is based on an online learning method for the construction of the dataset of atlases. The experiments demonstrate the higher accuracy of the suggested approach compared to a segmentation technique based on a fixed dataset of atlases and single‐atlas‐based segmentation technique.