Premium
Adaptive image denoising for speckle noise images based on fuzzy logic
Author(s) -
Yu Jimin,
Chen Long,
Zhou Shangbo,
Wang Limin,
Li Hantao,
Huang Saiao
Publication year - 2020
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22442
Subject(s) - computer science , artificial intelligence , computer vision , noise (video) , image noise , non local means , speckle noise , noise reduction , fuzzy logic , image texture , image (mathematics) , pattern recognition (psychology) , image processing , algorithm
Speckle noise is a kind of ubiquitous noise in medical image, which will damage the texture structure of image and affect the analysis of image structure by doctors. Therefore, we propose an image denoising model based on fuzzy logic, which can eliminate speckle noise in the image well, improve the recognition of the image, and facilitate the acquisition of image information by doctors. The main work arrangement of the algorithm model is to design a membership function that can traverse the noise image and preprocess the noise image to make the image smooth. Then, a mask template of 5 × 5 is designed by the definition of g‐l calculus, and there is mainly an unknown parameter in this template. We design the functional relation between this parameter and the image gradient, which makes the model algorithm adaptive. Finally, the convolution operation is performed between the template and the smooth image. By comparison with the existing mainstream models, the overall denoising effect of this model is better than other models, and the relevant numerical indexes are better than other models. This model is an extension of the denoising model of fuzzy theory, which is beneficial to the future research and development.