z-logo
Premium
Intuitionistic fuzzy approach for enhancement of low contrast mammogram images
Author(s) -
Chaira Tamalika
Publication year - 2020
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22437
Subject(s) - membership function , fuzzy set , fuzzy logic , artificial intelligence , contrast (vision) , mathematics , image (mathematics) , pattern recognition (psychology) , degree (music) , computer science , physics , acoustics
Mammogram image enhancement is very much necessary in diagnosing breast cancer or tumor at an early stage. Nonuniform illumination and low contrast images are commonly encountered in mammogram images. Conventional enhancement algorithms produce either some artifacts or cannot highlight minute details present in the images, particularly when dealing with mammogram images. In this article, we propose a new mammogram image enhancement scheme using Atanassov's intuitionistic fuzzy set (IFS) theory. IFS considers two uncertainties—membership and nonmembership degree apart from membership degree as in fuzzy set theory. As mammogram images are low contrast images and many of the image definitions are vague/unclear, so IFS theory may be suitable for better image enhancement. Initially, the image is transformed to an intuitionistic fuzzy image using a novel intuitionistic fuzzy generator. Hesitation degree is computed and using the hesitation degree, two membership levels are computed to form an interval type 2 fuzzy set. These two membership functions are then combined using Zadeh's fuzzy t‐conorm to form a new membership function. Threshold of interval type 2 fuzzy image is obtained using restricted equivalence function. Using the threshold, modified fuzzy hyperbolization is carried out. Real data experiments demonstrate that the proposed algorithm has better performance on contrast and visual quality of the images both quantitatively and qualitatively when compared with different existing methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here