Premium
Online variational learning of finite inverted Beta‐Liouville mixture model for biomedical analysis
Author(s) -
Kalra Meeta,
Bouguila Nizar,
Fan Wentao
Publication year - 2020
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22421
Subject(s) - computer science , segmentation , artificial intelligence , cluster analysis , pattern recognition (psychology) , medical imaging , image segmentation , mixture model , noise (video) , image (mathematics)
Image segmentation is widely applied for biomedical image analysis. However, segmentation of medical images is challenging due to many image modalities, such as, CT, X‐ray, MRI, microscopy among others. An additional challenge to this is the high variability, inconsistent regions with missing edges, absence of texture contrast, and high noise in the background of biomedical images. Thus, many segmentation approaches have been investigated to address these issues and to transform medical images into meaningful information. During the past decade, finite mixture models have been revealed to be one of the most flexible and popular approaches in data clustering. In this article, we propose a statistical framework for online variational learning of finite inverted Beta‐Liouville mixture model for clustering medical images. The online variational learning framework is used to estimate the parameters and the number of mixture components simultaneously, thus decreasing the computational complexity of the model. To this end, we evaluated our proposed algorithm on five different biomedical image data sets including optic disc detection and localization in diabetic retinopathy, digital imaging in melanoma lesion detection and segmentation, brain tumor detection, colon cancer detection and computer aid detection (CAD) of Malaria. Furthermore, we compared the proposed algorithm with three other popular algorithms. In our results, we analyze that the proposed online variational learning of finite IBL mixture model algorithm performs accurately on multiple modalities of medical images. It detects the disease patterns with high confidence. Computational and statistical approaches like the one presented in this article hold a significant impact on medical image analysis and interpretation in both clinical applications and scientific research. We believe that the proposed algorithm has the capacity to address multi modal biomedical image data sets and can be further applied by researchers to analyze correct disease patterns.