Premium
Analysis and classification of malignancy in pancreatic magnetic resonance images using neural network techniques
Author(s) -
Balasubramanian Aruna Devi,
Murugan Pallikonda Rajasekaran,
Thiyagarajan Arun Prasath
Publication year - 2019
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22314
Subject(s) - support vector machine , artificial intelligence , computer science , pattern recognition (psychology) , magnetic resonance imaging , computer aided diagnosis , artificial neural network , benchmark (surveying) , cad , radiology , medicine , geodesy , engineering drawing , engineering , geography
Computer‐aided diagnosis (CAD) is a computerized way of detecting tumors in MR images. Magnetic resonance imaging (MRI) has been generally used in the diagnosis and detection of pancreatic tumors. In a medical imaging system, soft tissue contrast and noninvasiveness are clear preferences of MRI. Inaccurate detection of tumor and long time consumption are the disadvantages of MRI. Computerized classifiers can greatly renew the diagnosis activity, in terms of both accuracy and time necessity by normal and abnormal images, automatically. This article presents an intelligent, automatic, accurate, and robust method to classify human pancreas MRI images as normal or abnormal in terms of pancreatic tumor. It represents the response of artificial neural network (ANN) and support vector machine (SVM) techniques for pancreatic tumor classification. For this, we extract features from MR images of pancreas using the GLCM method and select the best features using JAFER algorithm. These features are analyzed by five classification techniques: ANN BP, ANN RBF, SVM Linear, SVM Poly, and SVM RBF. We compare the results with benchmark data set of MR brain images. The analytical outcome presents that the two best features used to classify the MR images using ANN BP technique have 98% classification accuracy.