z-logo
Premium
3D brain magnetic resonance imaging segmentation by using bitplane and adaptive fast marching
Author(s) -
Tuan Tran Anh,
Kim Jin Young,
Bao Pham The
Publication year - 2018
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22273
Subject(s) - segmentation , computer science , magnetic resonance imaging , artificial intelligence , level set (data structures) , skull , pattern recognition (psychology) , computer vision , image segmentation , neuroimaging , fast marching method , medicine , radiology , anatomy , psychiatry
Diagnosis using medical images helps doctors detect diseases and treat patients effectively. A system that segments objects automatically from magnetic resonance imaging (MRI) plays an important role when doctors diagnose injuries and brain diseases. This article presents a method for automatic brain, scalp, and skull segmentation from MRI that uses Bitplane and the Adaptive Fast Marching method (FMM). We focus on the segmentation of these tissues, especially the brain, because they are the essential objects, and their segmentation is the first step in the segmentation of other tissues. First, the type of each slice is set based on the shape of the brain, and the head region is segmented by removing its background. Second, the sure region and the unsure region are segmented based on the Bitplane method. Finally, this work proposes an approach for classification that is based on the Adaptive FMM. This approach is evaluated with the BrainWeb and Neurodevelopmental MRI databases and compared with other methods. The Dice Averages for brain, scalp, and skull segmentation are 96%, 80%, and 93%, respectively, on the BrainWeb database and 91%, 67%, and 80%, respectively, on the Neurodevelopmental MRI database.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here