Premium
Brightness preserving bi‐level fuzzy histogram equalization for MRI brain image contrast enhancement
Author(s) -
Magudeeswaran V.,
Ravichandran C. G.,
Thirumurugan P.
Publication year - 2017
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22219
Subject(s) - histogram equalization , histogram , artificial intelligence , histogram matching , brightness , adaptive histogram equalization , pattern recognition (psychology) , computer science , computer vision , fuzzy logic , mathematics , feature (linguistics) , image (mathematics) , linguistics , philosophy , physics , optics
Abstract In this article, brightness preserving bi‐level fuzzy histogram equalization (BPFHE) is proposed for the contrast enhancement of MRI brain images. Histogram equalization (HE) is widely used for improving the contrast in digital images. As a result, such image creates side‐effects such as washed‐out appearance and false contouring due to the significant change in brightness. In order to overcome these problems, mean brightness preserving HE based techniques have been proposed. Generally, these methods partition the histogram of the original image into sub histograms and then independently equalize each sub‐histogram. The BPFHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two sub‐histograms based on the mean intensities of the multi‐peaks in the original image and then equalizes them independently to preserve image brightness. The quantitative and subjective enhancement of proposed BPBFHE algorithm is evaluated using two well known parameters like entropy or average information contents (AIC) and Feature Similarity Index Matrix (FSIM) for different gray scale images. The proposed method have been tested using several images and gives better visual quality as compared to the conventional methods. The simulation results show that the proposed method has better performance than the existing methods, and preserve the original brightness quite well, so that it is possible to be utilized in medical image diagnosis.