z-logo
Premium
Fully automatic method for segmentation of brain tumor from multimodal magnetic resonance images using wavelet transformation and clustering technique
Author(s) -
Thiruvenkadam Kalaiselvi,
Perumal Nagaraja
Publication year - 2016
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22202
Subject(s) - artificial intelligence , computer science , cluster analysis , segmentation , pattern recognition (psychology) , transformation (genetics) , brain tumor , wavelet , magnetic resonance imaging , fuzzy logic , discrete wavelet transform , computer vision , wavelet transform , medicine , radiology , pathology , biochemistry , chemistry , gene
ABSTRACT Fully automatic brain tumor segmentation is one of the critical tasks in magnetic resonance imaging (MRI) images. This proposed work is aimed to develop an automatic method for brain tumor segmentation process by wavelet transformation and clustering technique. The proposed method using discrete wavelet transform (DWT) for pre‐ and post‐processing, fuzzy c‐means (FCM) for brain tissues segmentation. Initially, MRI images are preprocessed by DWT to sharpen the images and enhance the tumor region. It assists to quicken the FCM clustering technique and classified into four major classes: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and background (BG). Then check the abnormality detection using Fuzzy symmetric measure for GM, WM, and CSF classes. Finally, DWT method is applied in segmented abnormal region of images respectively and extracts the tumor portion. The proposed method used 30 multimodal MRI training datasets from BraTS2012 database. Several quantitative measures were calculated and compared with the existing. The proposed method yielded the mean value of similarity index as 0.73 for complete tumor, 0.53 for core tumor, and 0.35 for enhancing tumor. The proposed method gives better results than the existing challenging methods over the publicly available training dataset from MICCAI multimodal brain tumor segmentation challenge and a minimum processing time for tumor segmentation. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 305–314, 2016

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here