Premium
Fast and accurate fuzzy C‐means algorithm for MR brain image segmentation
Author(s) -
Hemanth D. Jude,
Anitha J.,
Balas Valentina Emilia
Publication year - 2016
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22176
Subject(s) - computer science , fuzzy logic , algorithm , segmentation , convergence (economics) , rate of convergence , computational complexity theory , image segmentation , artificial intelligence , reduction (mathematics) , data mining , pattern recognition (psychology) , mathematics , key (lock) , geometry , computer security , economics , economic growth
Fuzzy theory based intelligent techniques are widely preferred for medical applications because of high accuracy. Among the fuzzy based techniques, Fuzzy C‐Means (FCM) algorithm is popular than the other approaches due to the availability of expert knowledge. But, one of the hidden facts is that the computational complexity of the FCM algorithm is significantly high. Since medical applications need to be time effective, suitable modifications must be made in this algorithm for practical feasibility. In this study, necessary changes are included in the FCM approach to make the approach time effective without compromising the segmentation efficiency. An additional data reduction approach is performed in the conventional FCM to minimize the computational complexity and the convergence rate. A comparative analysis with the conventional FCM algorithm and the proposed Fast and Accurate FCM (FAFCM) is also given to show the superior nature of the proposed approach. These techniques are analyzed in terms of segmentation efficiency and convergence rate. Experimental results show promising results for the proposed approach. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 188–195, 2016