z-logo
Premium
A fast and efficient computer aided diagnostic system to detect tumor from brain magnetic resonance imaging
Author(s) -
Gupta Nidhi,
Khanna Pritee
Publication year - 2015
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22128
Subject(s) - computer science , segmentation , magnetic resonance imaging , block (permutation group theory) , feature (linguistics) , artificial intelligence , computer aided diagnosis , region of interest , pattern recognition (psychology) , cad , fuzzy logic , computer vision , mathematics , radiology , medicine , linguistics , philosophy , geometry , engineering drawing , engineering
In this work, a simple and efficient CAD (computer‐aided diagnostic) system is proposed for tumor detection from brain magnetic resonance imaging (MRI). Poor contrast MR images are preprocessed by using morphological operations and DSR (dynamic stochastic resonance) technique. The appropriate segmentation of MR images plays an important role in yielding the correct detection of tumor. On examination of three views of brain MRI, it was visible that the region of interest (ROI) lies in the middle and its size ranges from 240 × 240 mm 2 to 280 × 280 mm 2 . The proposed system makes effective use of this information and identifies four blocks from the desired ROI through block‐based segmentation. Texture and shape features are extracted for each block of all MRIs in the training set. The range of these feature values defines the threshold to distinguish tumorous and nontumorous MRIs. Features of each block of an MRI view are checked against the threshold. For a particular feature, if a block is found tumorous in a view, then the other views are also checked for the presence of tumor. If corresponding blocks in all the views are found to be tumorous, then the MRI is classified as tumorous. This selective block processing technique improves computational efficiency of the system. The proposed technique is well adaptive and fast, and it is compared with well‐known existing techniques, like k‐means, fuzzy c‐means, etc. The performance analysis based on accuracy and precision parameters emphasizes the effectiveness and efficiency of the proposed work.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here