z-logo
Premium
Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor
Author(s) -
Harikumar R.,
Vinoth kumar B.
Publication year - 2015
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22118
Subject(s) - artificial intelligence , pattern recognition (psychology) , wavelet , artificial neural network , computer science , biorthogonal system , radial basis function , probabilistic neural network , feature (linguistics) , feature extraction , daubechies wavelet , wavelet transform , discrete wavelet transform , time delay neural network , linguistics , philosophy
ABSTRACT In this article, we analyze the performance of artificial neural network, in classification of medical images using wavelets as feature extractor. This work classifies the mammographic image, MRI images, CT images, and ultrasound images as either normal or abnormal. We have tested the proposed approach using 50 mammogram images (13 normal and 37 abnormal), 24 MRI brain images (9 normal and 15 abnormal), 33 CT images (11 normal and 22 abnormal), and 20 ultrasound images (6 normal and 14 abnormal). Four kind of neural network models such as BPN (Back Propagation Network), Hopfield, RBF (Radial Basis Function), and PNN (Probabilistic neural network) were chosen for study. To improve diagnostic accuracy, the feature extracted using wavelets such as Harr, Daubechies (db2, db4, and db8), Biorthogonal and Coiflet wavelets are given as input to the neural network models. Good classification percentage of 96% was achieved using the RBF when Daubechies (db4) wavelet based feature extraction was used. We observed that the classification rate is almost high under the RBF neural network for all the dataset considered. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 33–40, 2015

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here