Premium
3D multiwavelet based block coding algorithm for compression of volumetric medical images
Author(s) -
Sudha V. K.,
Sudhakar R.
Publication year - 2014
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22093
Subject(s) - decorrelation , algorithm , set partitioning in hierarchical trees , computer science , data compression , encoder , artificial intelligence , image compression , computer vision , image processing , image (mathematics) , operating system
Three dimensional (3D) medical images possess some specific characteristics that should be utilized by an efficient compression scheme. In this article, one such compression scheme for volumetric 3D medical image data is presented. Two processes involved in this scheme are decorrelation and encoding. Decorrelation of the 3D data is realized through 3D multiwavelet transform with apt prefiltering so as to give good representation of the image which could be exploited by the encoder. Encoding is done through proposed Block Coding Algorithm, which is embedded, block based, and wavelet transform coding algorithm without maintaining any list structures. The idea behind this algorithm is to sort the 3D transform coefficients in to a 1D array with respect to declining thresholds and to use state table to keep track of the blocks and coefficients that has been coded. In the experiment conducted on various 3D magnetic resonance and computed tomography images of human brain with multiwavelets such as Geronimo–Hardin–Massopust, Chui‐Lian, and orthogonal symmetric/antisymmetric (SA4), efficiency of the proposed scheme was weighed against the state of art encoders such as 3D Set Partitioning in Hierarchical Trees, 2D Set Partitioned Embedded BloCK Coder, and No List SPIHT. Attributes used for performance measurements are peak signal to noise ratio, bit rate, and structural similarity index of reconstructed image with respect to original image. © 2014 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 24, 182–192, 2014