Premium
An intelligent mining system for diagnosing medical images using combined texture‐histogram features
Author(s) -
Dhanalakshmi K.,
Rajamani V.
Publication year - 2013
Publication title -
international journal of imaging systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.359
H-Index - 47
eISSN - 1098-1098
pISSN - 0899-9457
DOI - 10.1002/ima.22052
Subject(s) - artificial intelligence , computer science , association rule learning , pattern recognition (psychology) , classifier (uml) , histogram , artificial neural network , support vector machine , fuzzy logic , associative property , data mining , medical diagnosis , machine learning , image (mathematics) , mathematics , medicine , pathology , pure mathematics
ABSTRACT The aim of this article is to design an expert system for medical image diagnosis. We propose a method based on association rule mining combined with classification technique to enhance the diagnosis of medical images. This system classifies the images into two categories namely benign and malignant. In the proposed work, association rules are extracted for the selected features using an algorithm called AprioriTidImage, which is an improved version of Apriori algorithm. Then, a new associative classifier CLASS_Hiconst ( CL assifier based on ASS ociation rules with Hi gh Con fidence and S uppor t ) is modeled and used to diagnose the medical images. The performance of our approach is compared with two different classifiers Fuzzy‐SVM and multilayer back propagation neural network (MLPNN) in terms of classifier efficiency with sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. The experimental result shows 96% accuracy, 97% sensitivity, and 96% specificity and proves that association rule based classifier is a powerful tool in assisting the diagnosing process. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 194–203, 2013