Premium
Ab initio Modelling of Plasmons in Metal‐semiconductor Bilayer Transition‐metal Dichalcogenide Heterostructures
Author(s) -
Sen Huseyin Sener,
Xian Lede,
H. da Jornada Felipe,
Louie Steven G.,
Rubio Angel
Publication year - 2017
Publication title -
israel journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.908
H-Index - 54
eISSN - 1869-5868
pISSN - 0021-2148
DOI - 10.1002/ijch.201600122
Subject(s) - plasmon , heterojunction , chemistry , semiconductor , condensed matter physics , bilayer , density functional theory , fermi level , transition metal , ab initio , electronic band structure , time dependent density functional theory , electronic structure , optoelectronics , materials science , physics , electron , computational chemistry , biochemistry , quantum mechanics , membrane , catalysis , organic chemistry
Two‐dimensional transition‐metal dichalcogenides (TMDs) have attracted enormous interest, due to the richness of their optical and electronic properties. Here, we consider two prototypical two‐dimensional TMD metal‐semiconductor bilayer heterostructures, VSe 2 ‐MoSe 2 and VSe 2 ‐WSe 2 , and investigate the effect of the semiconducting layer on the plasmons supported by the metallic layer using first principles time‐dependent density functional theory (TDDFT) calculations. We focus on the flat region of the plasmon dispersion, where momentum transfer is larger than 0.05 Å −1 and the interband transitions gain importance. With the addition of the semiconducting layer, we show that the electronic band structure undergoes significant changes close to the Fermi level, and hybridization occurs, which leads to strengthening of the interband transitions and a significant redshift in the plasmon energy.