z-logo
Premium
Plasmonics with Doped Quantum Dots
Author(s) -
Routzahn Aaron L.,
White Sarah L.,
Fong LamKiu,
Jain Prashant K.
Publication year - 2012
Publication title -
israel journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.908
H-Index - 54
eISSN - 1869-5868
pISSN - 0021-2148
DOI - 10.1002/ijch.201200069
Subject(s) - plasmon , quantum dot , semiconductor , nanotechnology , doping , chemistry , localized surface plasmon , optoelectronics , materials science , surface plasmon
We review the discovery of localized surface plasmon resonances (LSPRs) in doped semiconductor quantum dots (QDs), an advance that has extended nanoplasmonics to materials beyond the classic gamut of noble metals. The initial demonstrations of near‐infrared LSPRs in QDs of heavily self‐doped copper chalcogenides and conducting metal oxides are setting the broad stage for this new field. We describe the key properties of QD LSPRs. Although the essential physics of plasmon resonances are similar to that in metal nanoparticles, the attributes of QD LSPRs represent a paradigm shift from metal nanoplasmonics. Carrier doping of quantum dots allows access to tunable LSPRs in the wide frequency range from the THz to the near‐infrared. Such composition or carrier density tunability is unique to semiconductor quantum dots and not achievable in metal nanoparticles. Most strikingly, semiconductor quantum dots allow plasmon resonances to be dynamically tuned or switched by active control of carriers. Semiconducting quantum dots thus represent the ideal building blocks for active plasmonics. A number of potential applications are discussed, including the use of plasmonic quantum dots as ultrasmall labels for biomedicine and electrochromic materials, the utility of LSPRs for probing nanoscale charge dynamics in semiconductors, and the exploitation of strong coupling between photons and excitons. Further advances in this field necessitate efforts toward generalizing plasmonic phenomena to a wider range of semiconductors, developing strategies for achieving controlled levels of doping and stabilizing them, investigating the spectroscopy of these systems on a fundamental level, and exploring their integration into optoelectronic devices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here