z-logo
Premium
Liver cancer prediction in a viral hepatitis cohort: A deep learning approach
Author(s) -
Phan DinhVan,
Chan ChienLung,
Li AiHsien Adams,
Chien TingYing,
Nguyen VanChuc
Publication year - 2020
Publication title -
international journal of cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.475
H-Index - 234
eISSN - 1097-0215
pISSN - 0020-7136
DOI - 10.1002/ijc.33245
Subject(s) - liver cancer , medicine , viral hepatitis , cohort , cancer , hepatitis c , hepatitis , oncology
Viral hepatitis is the primary cause of liver diseases, among which liver cancer is the leading cause of death from cancer. However, this cancer is often diagnosed in the later stages, which makes treatment difficult or even impossible. This study applied deep learning (DL) models for the early prediction of liver cancer in a hepatitis cohort. In this study, we surveyed 1 million random samples from the National Health Insurance Research Database (NHIRD) to analyze viral hepatitis patients from 2002 to 2010. Then, we used DL models to predict liver cancer cases based on the history of diseases of the hepatitis cohort. Our results revealed the annual prevalence of hepatitis in Taiwan increased from 2002 to 2010, with an average annual percentage change (AAPC) of 5.8% (95% CI: 4.2‐7.4). However, young people (aged 16‐30 years) exhibited a decreasing trend, with an AAPC of −5.6 (95% CI: −8.1 to −2.9). The results of applying DL models showed that the convolution neural network (CNN) model yielded the best performance in terms of predicting liver cancer cases, with an accuracy of 0.980 (AUC: 0.886). In conclusion, this study showed an increasing trend in the annual prevalence of hepatitis, but a decreasing trend in young people from 2002 to 2010 in Taiwan. The CNN model may be applied to predict liver cancer in a hepatitis cohort with high accuracy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here