Premium
The insulin‐like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild‐type epidermal growth factor receptor
Author(s) -
Suda Kenichi,
Mizuuchi Hiroshi,
Sato Katsuaki,
Takemoto Toshiki,
Iwasaki Takuya,
Mitsudomi Tetsuya
Publication year - 2014
Publication title -
international journal of cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.475
H-Index - 234
eISSN - 1097-0215
pISSN - 0020-7136
DOI - 10.1002/ijc.28737
Subject(s) - erlotinib , epidermal growth factor receptor , lung cancer , cancer research , insulin like growth factor 1 receptor , erlotinib hydrochloride , medicine , tyrosine kinase , epidermal growth factor , growth factor receptor , cancer , biology , oncology , receptor , growth factor
Epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor (TKI) therapy often provides a dramatic response in lung cancer patients with EGFR mutations. In addition, moderate clinical efficacy of the EGFR‐TKI, erlotinib, has been shown in lung cancer patients with the wild‐type EGFR . Numerous molecular mechanisms that cause acquired resistance to EGFR‐TKIs have been identified in lung cancers with the EGFR mutations; however, few have been reported in lung cancers with the wild‐type EGFR . We used H358 lung adenocarcinoma cells lacking EGFR mutations that showed modest sensitivity to erlotinib. The H358 cells acquired resistance to erlotinib via chronic exposure to the drug. The H358 erlotinib‐resistant (ER) cells do not have a secondary EGFR mutation, neither MET gene amplification nor PTEN downregulation; these have been identified in lung cancers with the EGFR mutations. From comprehensive screening of receptor tyrosine kinase phosphorylation, we observed increased phosphorylation of insulin‐like growth factor 1 receptor (IGF1R) in H358ER cells compared with parental H358 cells. H358ER cells responded to combined therapy with erlotinib and NVP‐AEW541, an IGF1R‐TKI. Our results indicate that IGF1R activation is a molecular mechanism that confers acquired resistance to erlotinib in lung cancers with the wild‐type EGFR .