Premium
A novel BH3 mimetic S1 potently induces Bax/Bak‐dependent apoptosis by targeting both Bcl‐2 and Mcl‐1
Author(s) -
Zhang Zhichao,
Song Ting,
Zhang Tiantai,
Gao Jin,
Wu Guiye,
An Lijia,
Du Guanhua
Publication year - 2011
Publication title -
international journal of cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.475
H-Index - 234
eISSN - 1097-0215
pISSN - 0020-7136
DOI - 10.1002/ijc.25484
Subject(s) - apoptosis , small hairpin rna , small molecule , cancer research , microbiology and biotechnology , immunoprecipitation , chemistry , biology , cell culture , biochemistry , genetics , gene knockdown
Broad spectrum Bcl‐2 small molecule inhibitors act as BH3 mimetics are effective antitumor agents. Herein, we have identified S1 , a previously discovered small molecule Bcl‐2 inhibitor, as the first authentic BH3 mimetic as well as a dual, nanomolar inhibitor of Bcl‐2 and Mcl‐1 ( K i = 310 nM and 58 nM, respectively). The results of fluorescence polarization assays, coimmunoprecipitation, fluorescent resonance energy transfer, and shRNA indicated that S1 can disrupt Bcl‐2/Bax, Mcl‐1/Bak and Bcl‐2/Bim heterodimerization in multiple cell lines, activate Bax accompanied by its translocation to mitochondrial, activate caspase 3 completely dependent on Bax/Bak, and in turn induce a Bim‐independent apoptosis. Moreover, S1 could induce apoptosis on the primary acute lymphoblastic leukemia cells regardless of Mcl‐1 level. Mechanism‐based single agent antitumor activity in a mouse xenograft H22 (mouse liver carcinoma) model ascertain its therapeutic potential. S1 represents a novel chemical class of antitumor leads that function solely as BH3 mimetics and pan‐Bcl‐2 inhibitors. In the meanwhile, S1 could become a unique tool for interactions between Bcl‐2 family proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom