Premium
Prevention of cigarette smoke–induced lung tumors in mice by budesonide, phenethyl isothiocyanate, and N ‐acetylcysteine
Author(s) -
Balansky Roumen,
Ganchev Gancho,
Iltcheva Marietta,
Steele Ver E.,
De Flora Silvio
Publication year - 2009
Publication title -
international journal of cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.475
H-Index - 234
eISSN - 1097-0215
pISSN - 0020-7136
DOI - 10.1002/ijc.24942
Subject(s) - phenethyl isothiocyanate , medicine , lung cancer , carcinogen , sidestream smoke , acetylcysteine , budesonide , physiology , cancer , pharmacology , cigarette smoke , antioxidant , asthma , biology , biochemistry , environmental health
Lung cancer is the most important cause of death among neoplastic diseases worldwide, and cigarette smoke (CS) is the major risk factor for cancer. Complementarily to avoidance of exposure to CS, chemoprevention will lower the risk of cancer in passive smokers, ex‐smokers, and addicted current smokers who fail to quit smoking. Unfortunately, chemoprevention clinical trials have produced disappointing results to date and, until recently, a suitable animal model evaluating CS carcinogenicity was not available. We previously demonstrated that mainstream CS induces a potent carcinogenic response when exposure of mice starts at birth. In the present study, neonatal mice (strain H) were exposed to CS for 120 consecutive days, starting at birth. The chemopreventive agents budesonide (2.4 mg/kg diet), phenethyl isothiocyanate (PEITC, 1,000 mg/kg diet), and N ‐acetyl‐L‐cysteine (NAC, 1,000 mg/kg body weight) were administered orally according to various protocols. The experiment was stopped after 210 days. Exposure to CS resulted in a high incidence and multiplicity of benign lung tumors and in significant increases of malignant lung tumors and other histopathological alterations. All three chemopreventive agents, administered to current smokers after weaning, were quite effective in protecting both male and female mice from CS pulmonary carcinogenicity. When given to ex‐smokers after withdrawal of exposure to CS, the protective capacity of budesonide was unchanged, while PEITC lost part of its cancer chemopreventive activity. In conclusion, the proposed experimental model provides convincing evidence that it is possible to prevent CS‐induced lung cancer by means of dietary and pharmacological agents.