z-logo
open-access-imgOpen Access
The Mincle ligand trehalose dibehenate differentially modulates M1‐like and M2‐like macrophage phenotype and function via Syk signaling
Author(s) -
Kodar Kristel,
Harper Jacquie L.,
McConnell Melanie J.,
Timmer Mattie S. M.,
Stocker Bridget L.
Publication year - 2017
Publication title -
immunity, inflammation and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 18
ISSN - 2050-4527
DOI - 10.1002/iid3.186
Subject(s) - syk , phenotype , microbiology and biotechnology , macrophage , function (biology) , ligand (biochemistry) , chemistry , signal transduction , biology , receptor , biochemistry , in vitro , tyrosine kinase , gene
Macrophages play a significant role in the progression of diseases, such as cancer, making them a target for immune‐modulating agents. Trehalose dibehenate (TDB) is known to activate M1‐like macrophages via Mincle, however, the effect of TDB on M2‐like macrophages, which are found in the tumor microenvironment, has not been studied. Methods qRT‐PCR, flow cytometry, cytokine ELISA, and Western Blotting were used to study the effect of TDB on GM‐CSF and M‐CSF/IL‐4 derived bone marrow macrophages (BMMs) from C57BL/6 and Mincle −/− mice. Results TDB treatment up‐regulated M1 markers over M2 markers by GM‐CSF BMMs, whereas M‐CSF/IL‐4 BMMs down‐regulated marker gene expression overall. TDB treatment resulted in Mincle‐independent down‐regulation of CD11b, CD115, and CD206 expression by GM‐CSF macrophages and CD115 in M‐CSF/IL‐4 macrophages. GM‐CSF BMMs produced of significant levels of proinflammatory cytokines (IL‐1β, IL‐6, TNF‐α), which was Mincle‐dependent and further enhanced by LPS priming. M‐CSF BMMs produced little or no cytokines in response to TDB regardless of LPS priming. Western blot analysis confirmed that the absence of cytokine production was associated with a lack of activation of the Syk kinase pathway. Conclusion This study illustrates that TDB has the potential to differentially regulate M1‐ and M2‐like macrophages in the tumor environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here