z-logo
open-access-imgOpen Access
Effector and regulatory dendritic cells display distinct patterns of miRNA expression
Author(s) -
Lombardi Vincent,
Luce Sonia,
Moussu Hélène,
Morizur Lise,
Gueguen Claire,
Neukirch Catherine,
CholletMartin Sylvie,
Mascarell Laurent,
Aubier Michel,
BaronBodo Véronique,
Moingeon Philippe
Publication year - 2017
Publication title -
immunity, inflammation and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 18
ISSN - 2050-4527
DOI - 10.1002/iid3.165
Subject(s) - microrna , immunology , dendritic cell , immune system , effector , medicine , immunotherapy , microvesicles , biology , gene , genetics
MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Method Using specific culture conditions, we differentiated immature human monocyte‐derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of T H 1, T H 2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non‐allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. Results We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR‐132 and miR‐155), was down‐regulated compared to non‐allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Conclusions Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow‐up AIT efficacy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here