Premium
Egypt's Coastal Vulnerability to Sea‐Level Rise and Storm Surge: Present and Future Conditions
Author(s) -
Torresan Silvia,
Furlan Elisa,
Critto Andrea,
Michetti Melania,
Marcomini Antonio
Publication year - 2020
Publication title -
integrated environmental assessment and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 57
eISSN - 1551-3793
pISSN - 1551-3777
DOI - 10.1002/ieam.4280
Subject(s) - storm surge , vulnerability index , coastal erosion , shore , vulnerability (computing) , climate change , coastal flood , mediterranean climate , vulnerability assessment , environmental science , geography , storm , intertidal zone , physical geography , flooding (psychology) , coastal hazards , oceanography , sea level rise , geology , meteorology , psychology , computer security , archaeology , psychological resilience , computer science , psychotherapist
We assess the relative vulnerability of the Mediterranean shoreline of Egypt (about 1000 km in length) to climate change (i.e., sea‐level rise [SLR], storm surge flooding, and coastal erosion) by using a Climate‐improved Coastal Vulnerability Index (CCVI). We integrate information relative to a multidimensional set of physical, geological, and socioeconomic variables, and add to the mainstream literature the consideration of both a reference and a climate change scenario, assuming the representative concentration pathway 8.5 W/m 2 (RCP8.5) for the 21st century in the Mediterranean region. Results report that approximately 1% (~43 km²) of the mapped shoreline is classifiable as having a high or very high vulnerability, whereas approximately 80% (4652 km²) shows very low vulnerability. As expected, exposure to inundation and erosion is especially relevant in highly developed and urbanized coastal areas. Along the shoreline, while the Nile Delta region is the most prone area to coastal erosion and permanent or occasional inundations (both in the reference and in the climate scenario), results show the Western Desert area to be less vulnerable due to its geological characteristics (i.e., rocky and cliffed coasts, steeper coastal slope). The application of the CCVI to the coast of Egypt can be considered as a first screening of the hot‐spot risk areas at the national scale. The results of the analysis, including vulnerability maps and indicators, can be used to support the development of climate adaptation and integrated coastal zone management strategies. Integr Environ Assess Manag 2020;16:761–772. © 2020 SETAC