Premium
Stable oxygen and hydrogen isotopes as indicators of lake water recharge and evaporation in the lakes of the Yinchuan Plain
Author(s) -
Qian Hui,
Wu Jianhua,
Zhou Yahong,
Li Peiyue
Publication year - 2013
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.9915
Subject(s) - groundwater recharge , hydrology (agriculture) , groundwater , evaporation , irrigation , environmental science , precipitation , coastal plain , geology , pan evaporation , wetland , aquifer , ecology , geography , paleontology , biology , geotechnical engineering , meteorology
The Yinchuan Plain has more than 2000 years of history of irrigation by diverting water from the Yellow River. Currently, the amount of water diverted from the Yellow River is about 21.7 times the water formed on the plain as a result of precipitation and inflow of groundwater. Under the intensive influence of irrigation, the plain changed from a desert into a rich and populous area, earning its name as ‘South China Beyond the Great Wall’, with lakes scattered across the Yinchuan Plain just as stars in the sky. In this research, 17 representative lakes were sampled to analyze and study 2 H and 18 O content; the results showed that lakes on the plain have undergone obvious non‐equilibrium evaporation. Recharges of the lakes can be divided into three types: recharge from the Yellow River, from groundwater and from both of these. The Craig–Gordon non‐equilibrium evaporation model for isotope fractionation was used to estimate the evaporation proportion of each lake. The results showed that evaporation from lakes on Yinchuan Plain is generally extensive under the dry climatic conditions. Most lakes have an evaporation proportion of over 25%, with the largest originating from Shahu lake and Gaomiaohu lake in the northern part of the plain, at 42.5% and 42.8%, respectively. The evaporation proportions calculated on the basis of 18 O and 2 H are very close to each other. This shows that the method used in this paper is feasible for estimating the evaporation proportions of lakes in areas with a heavy anthropogenic influence. Copyright © 2013 John Wiley & Sons, Ltd.