Premium
Wet surface resistance of forest canopy in monsoon Asia: Implications for eddy‐covariance measurement of evapotranspiration
Author(s) -
Hong J.,
Takagi K.,
Ohta T.,
Kodama Y.
Publication year - 2012
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.9547
Subject(s) - evapotranspiration , eddy covariance , environmental science , canopy , monsoon , atmospheric sciences , precipitation , east asian monsoon , bowen ratio , atmosphere (unit) , climatology , hydrology (agriculture) , ecosystem , geography , meteorology , geology , ecology , geotechnical engineering , archaeology , biology
During the Asian monsoon period, intense precipitation commonly occurs for an extended period in accompaniment with a reduction in solar radiation. This suggests that wet surface evapotranspiration is an important contributor to the total evapotranspiration. Therefore, investigating evapotranspiration over a wet canopy surface is critical to achieve a better understanding of water and energy cycles in Asia. In this study, we estimated surface resistances under wet conditions in a mixed forest influenced by the East Asian monsoon system. We showed that the surface resistance had a non‐negligible magnitude of about 30 sm −1 even under wet conditions. We also found that the ratio between the actual and potential evapotranspiration depended on the friction velocity regardless of the time of day. Our analyses suggest that this dependency is tightly related to the underestimation of turbulent fluxes by the eddy‐covariance system under wet surface conditions. Together, our findings suggest that the wet surface resistance, although small, should be considered in simulating evapotranspiration because the forest ecosystem is strongly coupled to the overlying atmosphere. This could significantly improve the shortcomings of evapotranspiration measurement and modeling in Asian forest canopies influenced by the monsoon system. Copyright © 2012 John Wiley & Sons, Ltd.