Premium
Comparing the performance of empirical black‐box models for river flow forecasting in the Heihe River Basin, Northwestern China
Author(s) -
He Zhibin,
Zhao Wenzhi,
Liu Hu
Publication year - 2012
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.9532
Subject(s) - black box , nonlinear system , streamflow , empirical modelling , environmental science , drainage basin , precipitation , perturbation (astronomy) , computer science , structural basin , linear model , meteorology , hydrology (agriculture) , econometrics , climatology , mathematics , geology , simulation , geography , paleontology , physics , cartography , geotechnical engineering , quantum mechanics , artificial intelligence , machine learning
For many practical reasons, the empirical black‐box models have become an increasingly popular modelling tool for river flow forecasting, especially in mountainous areas where very few meteorological observatories exist. In this article, precipitation data are used as the only input to estimate river flow. Using five empirical black‐box models—the simple linear model, the linear perturbation model, the linearly varying gain factor model, the constrained nonlinear system model and the nonlinear perturbation model–antecedent precipitation index—modelling results are compared with actual results in three catchments within the Heihe River Basin. The linearly varying gain factor model and the nonlinear perturbation model yielded excellent predictions. For better simulation accuracy, a commonly used multilayer feed‐forward neural network model (NNM) was applied to incorporate the outputs of the individual models. Comparing the performance of these models, it was found that the best results were obtained from the NNM model. The results also suggest that more reliable and precise predictions of river flow can be obtained by using the NNM model while also incorporating the combined outputs of different empirical black‐box models. Copyright © 2012 John Wiley & Sons, Ltd.