Premium
Impact of grout curtains on karst groundwater behaviour: an example from the Dinaric karst
Author(s) -
Bonacci Ognjen,
RojeBonacci Tanja
Publication year - 2011
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.8359
Subject(s) - karst , piezometer , grout , groundwater , aquifer , hydrology (agriculture) , geology , borehole , sinkhole , environmental science , geotechnical engineering , paleontology
Grout curtains are vertical grout walls installed in the ground. In karst terrains, their construction is primarily connected with dams and reservoirs. Their main role is to increase water tightness and to prevent progressive erosion, blocking possible seepage paths along karst fissures and conduits. In this article, changes in the behaviour of the groundwater level (GWL) and the water temperature in nine deep piezometers, which were caused by the construction of a grout curtain at the Đale Reservoir on the Cetina River (Croatia), were analysed. The total length of the grout curtain is 3966 m. It spreads 120 m below the dam. The most analysed data are from the period after the dam had been built. Only few data and figures concern the comparison between pre‐ and post‐dam periods. The hourly data of the GWL and the water temperature were analysed for the period between 1 September 2008 at 02:00 h to 31 December 2009 at 23:00 h (11 687 h total) in six deep piezometers (marked in the text and figures as 1, 2, 3, 4, 5 and 6). For three piezometers (marked in the text and figures as A, B and C), some discontinuous measurements of the GWL and the water temperature were available for analysis. The construction of the grout curtain made strong, sudden and possibly dangerous changes to the characteristics of the aquifer and the circulation of groundwater in the local area. Special attention is paid to analyses of the behaviour of the hourly GWL data measured in the piezometers pairs (two neighbouring piezometers, one inside and the other outside of the grout curtain). During more than 80% of the analysed period, the GWL was higher in the piezometer inside the grout curtain than the one outside of it. The intensity and range of the dynamics of GWL was higher in piezometer outside the grout curtain than the inside ones. After the construction of the grout curtain, the maximum measured hydrostatic pressure on some parts of the grout curtain was approximately 40 m. It changes quickly in both time and direction. The water temperature was found to be similar in all of the measured piezometers, and it varies between 10.2 and 15.7 °C with an average value of 12.7 °C. Copyright © 2011 John Wiley & Sons, Ltd.