Premium
A simple overland flow calculation method for distributed groundwater recharge models
Author(s) -
Mansour M. M.,
Barkwith A.,
Hughes A. G.
Publication year - 2011
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.8074
Subject(s) - groundwater recharge , surface runoff , baseflow , hydrology (agriculture) , runoff model , environmental science , groundwater flow , streamflow , runoff curve number , hydrogeology , drainage basin , groundwater , aquifer , geology , geotechnical engineering , geography , ecology , cartography , biology
A method to improve the calculation of overland flow in distributed groundwater recharge models is presented and applied to two sub‐catchments in the Thames Basin, UK. Recharge calculation studies tend to simulate the runoff flow component of river flow in a simplistic way, often as a fraction of rainfall over a particular period. The method outlined in this study intends to improve the calculation of groundwater recharge estimates in distributed recharge models but does not present an alternative to complex overland flow simulators. This method uses seasonally varying coefficients to calculate runoff for specified hydrogeological classes or runoff zones, which are used to model baseflow index variations across the basin. It employs a transfer function model to represent catchment storage. Monte Carlo simulation was applied to refine the runoff values. Decoupling the runoff zones between the two sub‐catchments produces a better match between the simulated and observed values; however, the difference between observed runoff and the simulated output indicates other factors, such as landuse and topographical characteristics that affect the generation of runoff flow, need to be taken into account when classifying runoff zones. British Geological Survey © NERC 2011. Hydrological Processes © 2011 John Wiley & Sons, Ltd.