Premium
Simulation of evapotranspiration and carbon dioxide flux in the wheat‐maize rotation croplands of the North China Plain using the Simple Biosphere Model
Author(s) -
Lei Huimin,
Yang Dawen,
Shen Yanjun,
Liu Yu,
Zhang Yucui
Publication year - 2011
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.8026
Subject(s) - evapotranspiration , environmental science , eddy covariance , biosphere model , hydrology (agriculture) , carbon dioxide , transpiration , latent heat , atmospheric sciences , biosphere , sensible heat , soil water , soil science , ecosystem , photosynthesis , meteorology , ecology , chemistry , geology , physics , geotechnical engineering , biology , biochemistry
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO 2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.