Premium
Suspended solid yield from forest harvesting on upland blanket peat
Author(s) -
Rodgers Michael,
O'Connor Mark,
Robinson Mark,
Muller Markus,
Poole Russell,
Xiao Liwen
Publication year - 2010
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7836
Subject(s) - environmental science , hydrology (agriculture) , peat , suspended solids , felling , drainage basin , soil water , buffer strip , surface runoff , environmental engineering , agroforestry , ecology , soil science , geology , wastewater , geography , geotechnical engineering , cartography , biology
Forest harvesting activities, if not carefully carried out, can disturb the forest soils and can cause significant suspended solid concentration increases in receiving water. This study examined how harvesting, following forestry guidelines, influenced suspended solid concentrations and loads in the receiving water of a blanket peat salmonid catchment. The study site comprised of two forest coupes of 34‐year‐old conifers drained by a first‐order stream. The upper coupe was not felled and acted as a baseline ‘control’ catchment; the downstream coupe was completely harvested in summer 2005 and served as the ‘experimental’ catchment. Good management practices such as the proper use of brash mats and harvesting only in dry weather were implemented to minimize soil surface disturbance and streambank erosion. Stream flow and suspended solid measurements at an upstream station (US) and a downstream station (DS) in the study stream commenced over a year before felling took place. The suspended solid concentrations, yields and release patterns at US and DS were compared before and after harvesting. These showed that post‐guideline harvesting of upland blanket peat forest did not significantly increase the suspended solid concentrations in the receiving water and the aquatic zone need not be adversely affected by soil releases from sites without a buffer strip. Copyright © 2010 John Wiley & Sons, Ltd.