z-logo
Premium
An analytical solution for describing the transient temperature distribution in an aquifer thermal energy storage system
Author(s) -
Li KuangYi,
Yang ShawYang,
Yeh HundDer
Publication year - 2010
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7779
Subject(s) - aquifer , thermal conduction , advection , geothermal gradient , hydraulic conductivity , laplace transform , geology , thermal conductivity , heat transfer , mechanics , thermal , thermal energy storage , geothermal energy , soil science , thermodynamics , geotechnical engineering , groundwater , geophysics , physics , mathematics , mathematical analysis , soil water
A mathematical model is developed for predicting the temperature distribution in an aquifer thermal energy storage (ATES) system, which consists of a confined aquifer bounded from above and below by the rocks of different geological properties. The main transfer processes of heat include the conduction and advection in the aquifer and the conduction in the rocks. The semi‐analytical solution in dimensionless form for the model is developed by Laplace transforms and its corresponding time‐domain solution is evaluated by the modified Crump method. Field geothermal property data are used to simulate the temperature distribution in an ATES system. The results show that the heat transfer in the aquifer is fast and has a vast effect on the vicinity of the wellbore. However, the aquifer temperature decreases with increasing radial and vertical distances. The temperature in the aquifer may be overestimated when ignoring the effect of thermal conductivity. The temperature distribution in an ATES system depends on the vertical thermal conduction in the rocks and the horizontal advection and thermal conduction in the aquifer. The present solution is useful in designing and simulating the heat injection facility in the ATES systems. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here