z-logo
Premium
Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models
Author(s) -
Izadifar Zohreh,
Elshorbagy Amin
Publication year - 2010
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7771
Subject(s) - evapotranspiration , environmental science , genetic programming , hydrological modelling , wind speed , regression analysis , eddy covariance , statistical model , meteorology , mathematics , statistics , computer science , machine learning , climatology , geography , ecology , ecosystem , biology , geology
The complexity of the evapotranspiration process and its variability in time and space have imposed some limitations on previously developed evapotranspiration models. In this study, two data‐driven models: genetic programming (GP) and artificial neural networks (ANNs), and statistical regression models were developed and compared for estimating the hourly eddy covariance (EC)‐measured actual evapotranspiration (AET) using meteorological variables. The utility of the investigated data‐driven models was also compared with that of HYDRUS‐1D model, which makes use of conventional Penman–Monteith (PM) model for the prediction of AET. The latent heat (LE), which is measured using the EC method, is modelled as a function of five climatic variables: net radiation, ground temperature, air temperature, relative humidity, and wind speed in a reconstructed landscape located in Northern Alberta, Canada. Several ANN models were evaluated using two training algorithms of Levenberg–Marquardt and Bayesian regularization. The GP technique was used to generate mathematical equations correlating AET to the five climatic variables. Furthermore, the climatic variables, as well as their two‐factor interactions, were statistically analysed to obtain a regression equation and to indicate the climatic factors having significant effect on the evapotranspiration process. HYDRUS‐1D model as an available physically based model was examined for estimating AET using climatic variables, leaf area index (LAI), and soil moisture information. The results indicated that all three proposed data‐driven models were able to approximate the AET reasonably well; however, GP and regression models had better generalization ability than the ANN model. The results of HYDRUS‐1D model exhibited that a physically based model, such as HYDRUS‐1D, might be comparable or even inferior to the data‐driven models in terms of the overall prediction accuracy. Based on the developed GP and regression models, net radiation and ground temperature had larger contribution to the AET process than other variables. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here