Premium
Characterizing the flush of stream chemical runoff from forested watersheds
Author(s) -
Zhang Zhao,
Tao Fulu,
Shi Peijun,
Xu Wei,
Sun Yu,
Fukushima Takehiko,
Onda Yuichi
Publication year - 2010
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7717
Subject(s) - first flush , surface runoff , storm , hydrology (agriculture) , watershed , environmental science , streams , water quality , stormwater , nitrate , particulates , meteorology , ecology , geology , geography , computer network , geotechnical engineering , machine learning , computer science , biology
A flush can be defined as stream chemical exhibiting higher concentrations during the prophase of a storm event at an event scale, or exhibiting progressively lower concentrations during several successive storms at a seasonal scale. Investigating the flush characteristics of chemical runoff from forested watersheds is important and helpful to understand the chemical dynamics as well as to design a sampling schedule strategy during storm events. Here, three parameters describing the flush characteristic are quantified and the flush characteristics of chemicals from four Japanese forested watersheds (Mie, Kochi, Nagano and Tokyo) were investigated at both event and seasonal levels. We found that the characteristics of the flush were complicated, and depended on the constituents of the hydrochemistry, climate and runoff quality. Generally, the flush occurs more readily for particulate components than for those in solution; the flush on nitrate‐nitrogen is weaker in regions of nitrogen saturation, such as Nagano and Tokyo, than in Mie and Kochi. Rainfall feature was the main factor controlling the flush of particulate components. However, the source available in a watershed plays a main role on the flushes of dissolve chemicals. Copyright © 2010 John Wiley & Sons, Ltd.