Premium
Above‐stream microclimate and stream surface energy exchanges in a wildfire‐disturbed riparian zone
Author(s) -
Leach J. A.,
Moore R. D.
Publication year - 2010
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7639
Subject(s) - environmental science , microclimate , latent heat , sensible heat , atmospheric sciences , canopy , hydrology (agriculture) , riparian zone , meteorology , geology , ecology , geography , habitat , biology , geotechnical engineering
Stream temperature and riparian microclimate were characterized for a 1·5 km wildfire‐disturbed reach of Fishtrap Creek, located north of Kamloops, British Columbia. A deterministic net radiation model was developed using hemispherical canopy images coupled with on‐site microclimate measurements. Modelled net radiation agreed reasonably with measured net radiation. Air temperature and humidity measured at two locations above the stream, separated by 900 m, were generally similar, whereas wind speed was poorly correlated between the two sites. Modelled net radiation varied considerably along the reach, and measurements at a single location did not provide a reliable estimate of the modelled reach average. During summer, net radiation dominated the surface heat exchanges, particularly because the sensible and latent heat fluxes were normally of opposite sign and thus tended to cancel each other. All surface heat fluxes shifted to negative values in autumn and were of similar magnitude through winter. In March, net radiation became positive, but heat gains were cancelled by sensible and latent heat fluxes, which remained negative. A modelling exercise using three canopy cover scenarios (current, simulated pre‐wildfire and simulated complete vegetation removal) showed that net radiation under the standing dead trees was double that modelled for the pre‐fire canopy cover. However, post‐disturbance standing dead trees reduce daytime net radiation reaching the stream surface by one‐third compared with complete vegetation removal. The results of this study have highlighted the need to account for reach‐scale spatial variability of energy exchange processes, especially net radiation, when modelling stream energy budgets. Copyright © 2010 John Wiley & Sons, Ltd.