z-logo
Premium
Re‐establishment of soil water repellency after destruction by intense burning in a Mediterranean heathland (SW Spain)
Author(s) -
Jordán Antonio,
González Félix A.,
Zavala Lorena M.
Publication year - 2009
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7519
Subject(s) - environmental science , surface runoff , soil water , mediterranean climate , hydrology (agriculture) , soil science , ecology , geology , biology , geotechnical engineering
Soil water repellency has been conventionally considered as a fire‐induced effect, but an increasing number of studies have suggested that natural background repellency occurs in many soil types, and many of them have suggested that water repellency can be re‐established over time after being destroyed. An experimental fire was conducted to study changes of the soil surface during the first 18 months following intense burning. The main objectives of this paper are as follows: (1) to investigate in situ water repellency changes at three soil depths (0, 2 and 4 cm) immediately after burning; (2) to evaluate the medium‐term evolution of water repellency under field conditions; and (3) to outline the main hydrological consequences of these changes. Also, different water repellency tests (water drop penetration time, ethanol percentage test (EPT) and contact angle (CA) between water drops and the soil surface) were carried out for comparison purposes. Field experiments showed that soil water repellency was partly destroyed after intense burning. Changes were relatively strong at the soil surface, but diminished progressively with depth. Levels of water repellency were practically re‐established 18 months after burning. This suggests that water repellency in the studied area is not necessarily a consequence of fire, but can instead be a natural attribute. Finally, although limited in time, destruction of soil water repellency has important consequences for runoff flow generation and soil loss rates, and, indirectly, for water quality. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here