z-logo
Premium
Evaluating a nonionic surfactant as a tool to improve water availability in irrigated cotton
Author(s) -
Sullivan D. G.,
Nuti R. C.,
Truman C. C.
Publication year - 2009
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7330
Subject(s) - loam , pulmonary surfactant , environmental science , surface runoff , nonionic surfactant , soil water , field experiment , infiltration (hvac) , crop , water content , agronomy , soil science , chemistry , materials science , biology , geology , ecology , biochemistry , geotechnical engineering , composite material
Abstract Nonionic surfactants have been well researched in turf grass environments as a tool to ameliorate water‐repellant conditions. However, few studies have evaluated the risks and benefits of nonionic surfactant applications in row‐crop agricultural systems. The objective of this study was to evaluate the impact of a nonionic surfactant on cotton ( Gossypium hirsutum L.) production on a Faceville loamy sand (fine, kaolinitic thermic Typic Kandiudult) in the coastal plain region of Georgia. The experiment consisted of two components: (1) on‐site rainfall simulation and (2) agronomic cotton field trials. Treatments were designed to test the impact of rate and frequency of surfactant applications using six combinations of application rates and timings. For the rainfall simulation component, only the control (0·0 L ha −1 ) and high rate (0·51 L ha −1 ) of surfactant applications were evaluated. During the field trial, soil water content, cotton stand counts, and yield were measured. Rainfall simulations showed that the addition of surfactant increased runoff, decreased infiltration, and promoted surface sealing. Despite the demonstrated potential for water loss, agronomic field trials showed that crop yields were not significantly different between surfactant‐treated and untreated plots. No differences in soil water content were observed between treatments at 5 and 15 cm depths; however, soil water content was significantly higher in untreated control plots at the 30 cm depth. Data demonstrate the need for clarification of soil physical/chemical properties and surfactant interactions that may lend themselves to the creation of surface seals and how these seals impact soil/water conservation and crop yield. Published in 2009 by John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here