Premium
Daily pan evaporation modelling using multi‐layer perceptrons and radial basis neural networks
Author(s) -
Kişi Özgür
Publication year - 2008
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7126
Subject(s) - artificial neural network , perceptron , pan evaporation , mean squared error , wind speed , multilayer perceptron , evaporation , radial basis function , computer science , statistics , environmental science , mathematics , artificial intelligence , meteorology , geography
This paper reports on investigations of the abilities of three different artificial neural network (ANN) techniques, multi‐layer perceptrons (MLP), radial basis neural networks (RBNN) and generalized regression neural networks (GRNN) to estimate daily pan evaporation. Different MLP models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity were developed to evaluate the effect of each of these variables on pan evaporation. The MLP estimates are compared with those of the RBNN and GRNN techniques. The Stephens‐Stewart (SS) method is also considered for the comparison. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE) and determination coefficient (R 2 ) statistics. Based on the comparisons, it was found that the MLP and RBNN computing techniques could be employed successfully to model the evaporation process using the available climatic data. The GRNN was found to perform better than the SS method. Copyright © 2008 John Wiley & Sons, Ltd.