Premium
Method to improve the mitigative effectiveness of a series of check dams against debris flows
Author(s) -
Osti Rabindra,
Egashira Shinji
Publication year - 2008
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.7118
Subject(s) - debris flow , debris , landslide , hydrology (agriculture) , structural basin , work (physics) , computer science , environmental science , series (stratigraphy) , geology , civil engineering , geotechnical engineering , engineering , geomorphology , paleontology , mechanical engineering , oceanography
The advance of technology has led to more competent countermeasures, but lives and properties still continue to suffer from water‐induced disasters, such as floods, landslides, and debris flows. To increase the effectiveness of counter systems, improved methods of planning and designing such systems are prerequisite. This paper describes briefly a methodological approach for predicting debris flow characteristics, and proposes techniques for evaluating and improving the mitigative effectiveness of check dams against debris flows in steep mountain torrents. Additionally, a non‐dimensional parameter, namely potential storage volume, is introduced to generalize the evaluation processes. As an example, the 1999 debris‐flow event in the San Julian River, Venezuela, is chosen for discussion. The paper also proposes a method of evaluating the control function of a series of check dams as well as the criteria for the selection of their sizes, numbers and locations. It is hoped that this work will help to determine which combinations of check dams will fit best together for the optimal control of debris flows and available resources in any river basin. Copyright © 2008 John Wiley & Sons, Ltd.