z-logo
Premium
Stream temperature modelling using artificial neural networks: application on Catamaran Brook, New Brunswick, Canada
Author(s) -
Chenard JeanFrancois,
Caissie Daniel
Publication year - 2008
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.6928
Subject(s) - tributary , mean squared error , environmental science , air temperature , hydrology (agriculture) , drainage basin , mean radiant temperature , coefficient of determination , ecology , meteorology , statistics , mathematics , climate change , geology , geography , cartography , geotechnical engineering , biology
Fish habitat and aquatic life in rivers are highly dependent on water temperature. Therefore, it is important to understand andto be able to predict river water temperatures using models. Such models can increase our knowledge of river thermal regimes as well as provide tools for environmental impact assessments. In this study, artificial neural networks (ANNs) will be used to develop models for predicting both the mean and maximum daily water temperature. The study was conducted within Catamaran Brook, a small drainage basin tributary to the Miramichi River (New Brunswick, Canada). In total, eight ANN models were investigated using a variety of input parameters. Of these models, four predicted mean daily water temperature and four predicted maximum daily water temperature. The best model for mean daily temperature had eight input parameters: minimum, maximum and mean air temperatures of the current day and those of the preceding day, the day of year and the water level. This model had an overall root‐mean‐square error (RMSE) of 0·96 °C, a bias of 0·26 °C and a coefficient of determination R 2 = 0·971. The model that best predicted maximum daily water temperature was similar to the first model but excluded mean daily air temperature. Good results were obtained for maximum water temperatures with an overall RMSE of 1·18 °C, a bias of 0·15 °C and R 2 = 0·961. The results of ANN models were similar to and/or better than those observed from the literature. The advantages of artificial neural networks models in modelling river water temperature lie in their simplicity of use, their low data requirement and their good performance, as well as their flexibility in allowing many input and output parameters. Copyright © 2008 Crown in the right of Canada and John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here