Premium
Application of a coil‐type TDR probe for measuring the volumetric water content in weathered granitic bedrock
Author(s) -
Katsura Shin'ya,
Kosugi Ken'ichirou,
Mizuyama Takahisa
Publication year - 2007
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.6663
Subject(s) - bedrock , geology , water content , macropore , soil water , reflectometry , hydrology (agriculture) , penetration depth , soil science , geomorphology , mineralogy , geotechnical engineering , chemistry , time domain , mesoporous material , biochemistry , physics , computer science , optics , computer vision , catalysis
As a first step toward describing water flow processes in bedrock, a coil‐type time domain reflectometry (TDR) probe capable of measuring volumetric water content, θ, in weathered bedrock at three depths was prepared. Because the coil‐type TDR probe is large in diameter (19 mm), it can be installed even in highly weathered bedrock more easily and appropriately than conventional TDR probes that consists of two or three rods of small diameter (5‐8 mm). The probe calibrations suggest that the values measured by the probe are very sensitive to changes in θ. Using the calibrated probe together with commercially available profile soil moisture sensors, the θ profile was monitored for 1 year. Even rainfall events with relatively small cumulative rainfall of 15 mm increased the bedrock θ, and the increments were comparable to those in the soil. After the end of the rainfall events, the bedrock θ displayed a more rapid drop than the soil, and varied little during the period of no rainfall. The water storage showed similar tendencies. These observations suggest that the bedrock θ is controlled by clearly distinguishable macropores and micropores within the bedrock. It is concluded that the coil‐type TDR probe is very effective in determining θ in weathered bedrock, and that bedrock, conventionally defined by conducting cone penetration tests and treated as impermeable, does conduct and hold substantial amounts of water, and therefore contribute greatly to hydrological processes in headwater catchments. Copyright © 2007 John Wiley & Sons, Ltd.