z-logo
Premium
Temporal variations of physical and hydrochemical properties of springs in the Mid‐Levels area, Hong Kong: results of a 1‐year comprehensive monitoring programme
Author(s) -
Leung ChiMan,
Jiao Jiu Jimmy
Publication year - 2007
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.6656
Subject(s) - groundwater recharge , spring (device) , hydrology (agriculture) , drainage , geology , water level , environmental science , groundwater , aquifer , geotechnical engineering , geography , mechanical engineering , ecology , cartography , engineering , biology
Springs and seeps occur in the spaces around Po Hing Fong Street in the Mid‐Levels area, Hong Kong. Most of the springs occur through the drainage weepholes on retaining walls at the street. This paper first examines the geology and history of the springs. The paper then reports the findings from a 1‐year comprehensive spring monitoring programme. The temporal variations of flow rate, physiochemical parameters and hydrochemistry of the springs are discussed. The average temperatures of the springs were close to the mean air temperature, although there was a systematic lag time of 40 to 50 days between the peak air temperature and highest water temperatures. Spring waters from two rows of weepholes in the retaining wall showed significantly different physical and hydrochemical responses to the changes in rainfall and temperature, though their vertical distance is only about 1 m. The results suggest that water from the upper row of weepholes may represent a recharge source that is shallow or close to the spring outlets, whereas that from the lower row of weepholes may represent a recharge source that is much deeper or further up the hill. Although the spring flows increased rapidly after rainstorms, analysis of the total dissolved solids showed a delayed response to rainstorm events. The concentration of individual ions in the spring water varied in a unique way in response to rainstorm events. It is clear that the presence of underground man‐made drainage systems and the leakage from water mains in the study area may add complexity to the solute responses and transport mechanisms. Further studies are required to constrain the impacts of these man‐made structures on the hydrogeology of the springs. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here